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Abstract

This paper focuses on the construction and analysis of the structure-preserving algorithm for generalized fractional
Schrodinger equation with wave operator. A fourth-order energy-conserving difference scheme is developed for the resulting
equivalent system based on scalar auxiliary variable approach. The discrete energy conservation law, boundedness and
convergence of difference solutions are proved in detail. Numerical experiments are performed to verify our theoretical analysis
results.
© 2023 International Association for Mathematics and Computers in Simulation IMACS). Published by Elsevier B.V. All rights
reserved.
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1. Introduction

In this paper, we consider the following nonlinear fractional Schrédinger equation with wave operator

Up + (—A)%u +iu, + Bf(uPHu =0, x eR, 1 € (0, T, (1.1
M(-xs 0) = ¢O(-x)» ut(-x’ O) = ¢1()C), X € R’ (12)
ux,1)=0, x e R\2,7 [0, T], (1.3)

where i = /—1,1 < a < 2, and B is a positive constant, ¢o(x) and ¢;(x) are known smooth functions, u(x, t)
is the complex-valued wave function to be determined, the nonlinear term f is a given real function, —(—A)*?y
denotes the Riesz fractional derivative with order «, see [20].

As well known, many continuous systems possess some physical quantities that naturally arise from the physical
context, such as energy, momentum and mass. Therefore, many researchers have devoted themselves to constructing
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numerical methods for preserving the inherent invariants of the original system as much as possible. In terms of
this model (1.1)—(1.3), which preserves the energy conservation law as follows

Em=MMwm%weAW%me+§AFwﬁw, (1.4)

where F(s) = f(; f(2)dz, see [1,9]. When o = 2, this model (1.1)—(1.3) is simplified to the classical Schrédinger
equation with wave operator. Over the past three decades, a great deal of research results has been developed on
the classical equations. For example, Bao et al. [1] proposed a difference method and studied the uniform error
estimates, Li et al. [7] constructed a compact difference scheme, Wang et al. [16] given discrete-time orthogonal
spline collocation method, Guo et al. [5] developed an energy conserving local discontinuous Galerkin method.

With the development of fractional calculus, researchers pay more and more attention to the study of fractional
models. For example, Ran and Zhang [9] developed a three-level linearly implicit conservative difference scheme
for this model (1.1)—(1.3), Cheng and Wu [3] proposed several conservative compact difference schemes for the
same model. Some energy-preserving difference schemes for the single and coupled fractional nonlinear Schrédinger
equations without wave operator has also been proposed, see [8,13,15].

However, most of the energy-preserving schemes mentioned above are either completely implicit or multi-layered
and low accuracy. A few are constructed with a linear energy-preserving scheme with high-order accuracy for
fractional models. The aim of this paper is to develop an energy-preserving and linear numerical scheme with higher-
order accuracy for this problem (1.1)—(1.3) based on triangular scalar auxiliary variable (T-SAV) approach proposed
in recent years. The ideas and application of SAV approaches, please refer to [4,10-12,18,19]. The advantage of
SAV approaches is that nonlinear terms in equations can be treated semi-explicitly. Compared with traditional SAV
approach, T-SAV approach adopted in this paper inherits all the advantages of SAV approach, and overcomes some
disadvantages such as the nonlinear free energy potential must be bounded from below and an inner product must
be calculated to calculate u"*!, see [19].

This article is organized as follows. In Section 2, we introduce the T-SAV approach to rewrite the model (1.1)-
(1.3) as an equivalent form. In Section 3, we construct a fourth-order difference scheme for the resulting equivalent
system and prove the discrete energy conservation law. In Section 4, the boundedness and convergence of the
difference solutions are discussed. In Section 5, some numerical experiments are given to verify the theoretical
results.

2. Equivalent system

In order to construct an energy-preserving and linear numerical scheme for solving the problem (1.1)—(1.3), it
is necessary to rewrite this problem into its equivalent system by using the T-SAV approach. To do this, let us
introduce a triangular scalar auxiliary variable as

r(t) = sin(E(u)) + &,

where
mw=[Fwﬁw,
2

and ¢ is a constant. To ensure that the value of r remains positive, € has to be greater than 1. Moreover, we usually
choose an ¢ large enough such that r(¢) is much greater than zero to avoid singularity, see [19].
As a result, we have

dE(u)
dt
Noticing that sin?(E1(u)) + cos2(E1(u)) = 1, we take

cos(E1(u)) = /1 — sin2(E;)) = V1 — (r — e)2. (2.2)

It follows from (2.1) that

1 & _dEew _ if F(lu)dx 2.3)
T—(r—e2dt dt — dt]g ' ’

ar _ os(E — cos(E) - [ Faupya 2.1
7 = cos(E(u)) = cos( 1('4))5/Q (Ju|*)dx. 2.1
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Taking the derivative of the arcsine function we get

d (arcsin( ) 1 dr
—(arcsin(r — ¢)) = —————.
dt 1—(r—g)2dt
Substituting (2.3) into the right side of (2.4), and we get immediately that
dE\(u) d

d .
d—t(arcsm(r —8)) = o
Thus Eq. (1.1) can be transformed into an equivalent system as follows
Ur =10,
v, = —(—=A)"%u — v — bwr,

d 2
o arcsin(r — ¢) = ERe(b(u)r, U),

_ _BfuPu
where b(u) = G055

For the resulting equivalent system (2.5)—(2.7), we have the following result.

Theorem 2.1. The equivalent system (2.5)—(2.7) possess modified energy conservation law as follows
E(r) = E(0),
where
E@) = llu 1 + (= 2)**u|* + Barcsin(r — &) = [|[v]|* + (= A)*"*u||* + B arcsin(r — ¢).
Proof. Computing the inner product of (2.6) with u, and taking the real part derives
Re(v;, u;) = —Re((—A)*u, u;) — Re(iv, u;) — Re(b(u)r, uy).
Noticing that
1d 1d
Re(vy, ) = 5], Re((=A)"u, u0) = 2 — || (=) u,

and (2.7), we can obtain

dE(t) —0
dt
That is,
E(t) = E(0).

The second equation in (2.9) can be obtained by using (2.5). This proof is completed.

3. High-order energy-conserving difference scheme

L / F(luP)dx = / FQuP) ity + u,i)dx = 2Re( f FQuPuidx).
(93 (] 0

(2.4)

2.5)
2.6)

2.7

(2.8)

(2.9)

(2.10)

In this section, we will first establish a high-order difference scheme and then analyze the discrete energy

conservation property of the proposed scheme.

3.1. Preparation

Let Z be integer field. Denote x; = jh for j € Z and hZ = {jh | j € Z}. For any grid functions u, v on hZ,

define the discrete inner product and norms as
v)=hY vy, Null =@ w), |ullo=suplu;l.
jez JeL
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Set Lﬁ = {u” € C: ||lu"|| < 400}, where C denotes complex field. For u” € L?, we denote the discrete Fourier
transform u” : [—m, ] by

1 400
i (w) = u'e e
V21 jZ_:OO !

Moreover, we have the inversion formula
1 +m/h
U = —— 1" (w)0"(w)dw,

P V2 S
and Parseval’s theorem
+m/h
(u,v) = / 1" ()" (w)dw.
—n/h

Also, for constant 0 <§ <1 and u € Li, define fractional Sobolev norm |u|| s and semi-norm |u|gs as

b g T
lull,s = h <1+|w|2“>|ﬁ<w)|2dw, lul?s =hf || ? i) dew.

-
From Parseval’s theorem, it is clear that ”””m = flu|*+ |ul3,; and |u|H0 = |lu])?.
The following lemmas are also crucial in the derivation and analysis of the difference scheme.

Lemma 3.1 (Discrete Uniform Sobolev Inequality, [14]). For every 1/2 < § < 1, there exists a constant Cs > 0
independent of h such that

lulloo = Csllull gs-
Lemma 3.2 ([/7]). Suppose

ue R = {vlv e L'(R), /00(1 + ) i(@) | doo < o0},
where V() is the Fourier transform v:/j:h respect to v(x), i.e.,

VW) = /00 v(x)e P dx.

oo

Then, we have
(=) u(x) = Z 39u(x — kh) + O(h*) = 8%u(x) + O(h*), (3.1)

where

4 (@) 1 ()
’*(01)_{ 38k 32ag§ ,k is even,

, 3gk ),k is odd,
in which
@ _ e+l \ @ @ _ Tt
1-— and =——k=1,2,....
8 ( cx/2+k>gk N T R

3.2. Derivation of the difference scheme

Without loss of generality, denote {2 = (a, b). Let T = T/N be the temporal step size and # = (b — a)/M be
spatial step size, where N and M are given positive integers. Denote #, = nt1(0 < n < N),x; = a + jh(0 <
J < M), =1{, | 0 <n < Njand 2 = {x; | 0 < j < M]}. Define the grid function space
Vi={v =1{v;} | 0 < j < M} and denote V}? ={v|veV,and vg = vy = 0}. For any grid function

v" € V), we denote
iy _ YT o) /RS S A e RS L e I
8,vj =", &Vi=—"—, v, fE——, U =
T h 2 2
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Using Taylor’s expansion, and applying the fourth-order fractional central difference approximation (3.1) in space
and Crank—Nicolson method in time to equivalent system (2.5)—(2.7) gives that

1 1
sUT =V Ty, (3.2)
n 1 n 1 n 1 ~ ~
sV = s U iV p(@THR™E 4Ty (3.3)
2 - -
5, arcsin(R"™> — ¢) = ERe(b(UH% YR, 8,UM 1) + T, (3.4)

where there is a positive constant Cg such that
max{|T{'|, 8, T{'|, |1T3'} < Cre?, max{|T3']} < Cr(z® +h*),0 <n < N, (3.5)
~ntl .1
with 072 = QU — U"™Y)/2 forn = 1, but U} = UY.
Omitting the error terms in (3.2)—(3.4), and replacing U, V and R by u, v and r respectively, we can obtain the
finite difference scheme which reads as

1 1
+1 +1
Sy =) 2, (3.6)
+1 +1 0 n+d S R |
s P ==, P —iv; P —b@@ )t (3.7)
. 1 2 U B | 1
8, arcsin(r"t2 —g) = ERe(b(u”+2)r"+2, S;u"t7). (3.8)
Denote
n __ n n n T n __ n n n T
u' =i, uy, .. uy )V =0, vy, v ),

the difference scheme (3.6)—(3.8) can be rewritten in the vector form

5,u”+% = U’H'%’ (39)
ST = — Ay — T — ()t (3.10)
. 1 2 ik pd 1
8, arcsin(r"t2 —g) = ERe(b(u”+2)r"+2, S;u"t2), 3.11)
where
a0 a@ @ ~@) ~@) ~@)
&0 g-1 g2 7 8-m+4 B-my3 E-mMp2
@) A =@ ~No) @) =@
g ) g1 v B_m+s B_mya B M43
~) ~(a) ~a) ~() ~a) ~()
& g &0 o BiMi6 &-M4s5 8- M4
@ _ 1
A I . .
he : : : - : : :
~) ~@) ~(a) ~) ~a) (o)
8m-4 8m-s Em-¢ " 8o 21 g,
(o) =) =) ~a) ~(a) ~(a)
gv—3 8m-4 8u-s & g0 [
~) ~@) ~(a) ~() ~a) (o)
| 8m—2 8m-3 EmM-4 T & g &

It is worth noting that A corresponding to the operator 85 is symmetric Toeplitz matrix since the coefficients
§§(“) defined in Lemma 3.2 satisfy that [17]

+00
& >08 =29 <0 Y g’'=0
k=—o00

The above equivalent form (3.9)—(3.11) is only used in programming implementation.

3.3. Discrete energy conservation law

In this subsection, we focus on the conservation of the difference scheme (3.6)—(3.8), and the following lemmas
are firstly introduced.
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Lemma 3.3 ([17]). For any grid functions v" € V), there exists a linear operator L' such that
1 1 1 1 1
Im(§v"2, 0" 2) = 0, Re(§jv"™2, 6,7 2) = (LW IF = IL“0" ).
T

Based on the previous preparation, we can prove the following result.

Theorem 3.4. The difference scheme (3.6)—(3.8) is energy-conserving, i.e., it satisfies that
E"=E’1<n<N,

where
E" = 0" 4+ [IL®u" | + B arcsin(r" — ¢).

Proof. Computing the inner product of (3.6) with 8,v”+%, and taking the real part, we have

1
Re(8,u" "2, 8,0" 1) = Re(v"*2, §,v"+1) = S P = 1" P). (3.12)
T

Similarly, computing the inner product of (3.7) with S,u”% and taking the real part, we obtain

Re(8,0"* 2, §,u" 1) = —Re(82u" 2, 8,u"*2) — Re(iv" 2, 8,u""2) — Re(b(@™+ 2)i"* 2, ,u™* 7). (3.13)
Using Lemma 3.3, we have

Re(8fu" 2, 8u" %) = %(IIL("‘)M"“ I = ILu"|1%). (3.14)
Also, it follows from (3.6) that

Re(iv™ 2, 8,u"2) = Re(iv"*2, v"+2) = 0. (3.15)
Combining (3.12)—(3.14) with (3.8), it holds that

E'""'=E" 1<n <N,
where

E" = |V'))* + |L®u™||* + B arcsin(r" — ¢).

It completes the proof.

4. Boundedness and convergence

In this section, let us turn our attention to the boundedness and convergence of solutions of the difference scheme
(3.6)—(3.8).

4.1. Boundedness
The following lemmas are important tools in proving the boundedness of difference solution.
Lemma 4.1 ([/7]). For 1 < a <2, we have

42« 1 " o n n 4 12¢ "
§|;| —3 [t | oz < (Su", u") < §—§|;| " | a2

1

Lemma 4.2 ([6]). For time sequences w = {w°, w', ..., w"} and g = {g°, g", ..., g"}, there is

n n n—1
1 2 12 1 2 2 2
|2T;gk8[wk+2| ff;|wk| +T;|8[gk+2| +§|wn+1| +2|gn|2+|w0| +|g()| )
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Lemma 4.3 (Gronwall inequality I, [21]). Suppose that the discrete grid function {w" |n =0,1,...,N; Nt =T}
satisfies the following inequality

w'—w" ' < Atw" + Brw" ' 4+ C, 1,

where A, B and C, are non-negative constants, then

N
max |w"| < [w’+ 7 E Ci | 2A+BT
1<n<N =1

where t is sufficiently small, such that (A + B)t < % < %(N > 1).

Lemma 4.4 (Gronwall inequality I, [21]). Suppose that the discrete grid function {w" |n =0, 1, ..., N} satisfies
the following inequality

n
w'<A4+1 E Brw*,
k=1
where A and By are non-negative constants, then we have

N
n
]rSI}lanN lw"| < Aexp (21 Z Bk) ,
k=1
where T is sufficiently small, such that T max;<x<y By < 1/2.

Based on above lemmas, we can prove the following boundedness result.

Theorem 4.5. Suppose nonlinear energy functional bounded from below, then we have estimates as follows:
lu*llc <C, 1 <n <N,

where C is a positive constant which is independent of T and h.

Proof. It follows from Theorem 3.4, there exists a constant C such that
E" = v"|* 4+ [L“u"|* + Barcsin(+" — &) = E° = C.

It implies that
"l < C, IL9u"] < C.

Computing the inner product of (3.9) with u”*’%, taking the real part, gives that

1 Lol ntdyon n n n
57 U2 = %) = Re("" 2, ™ 2) < 0" 2l 1+ Jlw" 1D/2 < CCla™ ) + 1" 1)/2.
That is,

lu" ) = u"|| < Cx.
Noticing that nt < T, and summing up the above inequality for n from O to n yields
u"] < C.
From Lemma 3.1, there is a positive constant § € (1/2, 1] such that
lullZ, < Cillullyys = CyCllull® + lul3s).
Noticing that (§fu”", u") = IL@u"||*, using Lemma 4.1 yields that
8aun’ u" 2 L(a)un 4
iz, < c2 (o4 O ) a0 MWL) o
) s 4,22 1y 8 41228 1\
Gl —3) Gl —3)
This proof is completed.
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4.2. Convergence

Now we turn to the convergence of solutions of the difference scheme (3.8)—(3.10).

Let e;? =Uj - u’}, then we can obtain the following convergence results.

Theorem 4.6. Assuming that the solution of the problem (1.1)—(1.3) is sufficiently smooth, then the solution of
difference scheme (3.6)—(3.8) satisfies that

le"loo < C(z? +h*, 1<n<N.

when t < taug, and C and ty are positive constants independent of T and h.

Proof. Subtracting (3.6)—(3.8) from (3.2)—(3.4), we obtain error system as follows

§,e"h =ty T, .1

S TE = =t — iyt — (b(O"RY — b ) + T “42)
2 - -

B = ZIRBWM DR, S UMD — Re(b(@* "2, bl )] + 1, (4.3)

where " = V" — ", " = arcsin(R" — ¢) — arcsin(r" — ¢).
(I) First we consider the convergence result when n = 0. From (1.2), we get

le’ll = 0. [In°l = 0. (4.4)
Computing the inner product of (4.1) with S,n%, and taking the real part, we obtain
1 1 1 1 0 1 Loy, | 0 1
Re(§,e2,8m2) = Re(n2, 8,n2) + Re(Ty, 6m2) = len I+ ;RG(T ). 4.5)

Similarly, computing the inner product of (4.2) with SZe%, and taking the real part, we have

Re(8,72, 8,¢2) = —Re(8%?, §,e2) — Re(in?, 8,e?) — Re(G2, 8,e2) + Re(T2, 8,¢7)

L@ U G 1o 0 o 1 (4.6)
= 5oL P —Re(in2. 02 +T{) — Re(G2. 8¢2) + Re(Ty. 8r¢2),
where
G2 = g(U?) — g(@?)
with g(u) = Bf(Ju|*)u. According to the continuity of the function g, we have
1 ~ 1 -1 T B 1
G2 =g(U?2) —g(a2) = g'(E"(U?2 —i2) < Cile'],
where C| = %max |g’(§™)| and &" is on the segment that connects U" and u”.
Moreover, by using (4.1) and (4.4), it follows that
1 LT 0
le'll < Elln I+ T 4.7)

This combining with (4.5)—(4.6) and C, > 2C; gives that
' 11> 4+ I1Le")?

= — 2Re(T?, ") — TRe(in', T?) + 2Re(TY, e') — 2Re(G?2, ')
< 2Re(T, n') + tRe(in', T) + 2Re(Ty, e') + 2C €' |12

1 3C2‘L’2
<[+ )T + TN + lenlllz + 27| T TSN+ Tnnlu2 + 3G TV
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Let Cp712 < 1/3, by virtue of (3.5), we have
"1+ 1L@e"|)?
<@+ DI+ TITI* + %nnln2 + 2| TPNT N+ 1700

<42+ V(b — a)CrT* + 1/ (b — a)Cr(t* + KM 4+ 21(b — a)CR** (2> + hY) + (b — a)Cr*1?
< Gy(r? + k%Y,
where C3 = [26T + 16T% + 17](b — a)C%. It implies that

In'll < Ca(x® + b, [L@e'|| < Ca(z® + h*). (4.8)
where Cy = «/C3. According to the estimate in (4.7), we obtain
le'l < Cs(x® + i), (4.9)

where Cs = (%C4 + /b —aCp)T.
Applying Lemmas 3.1 and 4.1 and combining the second inequality in (4.8), we have

le'loe < Co(z* + h*), (4.10)

2
where Cg = Cs [CZ + %‘glz and § is an arbitrary constant between 1/2 and 1.
,lﬁ‘ —_ s
(IT) Now we considersthe convergence for n > 1.
1
Computing the inner product of (4.1) with §1""2, and taking the real part yields that

Re(8,e"" 2, §,7""1) = Re(n" "2, 8,7"* 1) + Re(T7", 6,1" " 2)

1 n+12 nyn2 n n-‘rl (411)
= —Un""" 11" = IIn"I") + Re(T", ;" 2).
2T
Computing the discrete inner product of (4.2) with 8te"+%, and taking the real part gives that
Re(T!, 8,¢"+7)
= Re(8,11""2, 8,¢"2) + Re(8%¢" 2, 6,¢"2) + Re(in™* 2, 8,¢"*2) + Re(G" 2, 8, 7). 4.12)
where G"*2 = b(U"+ )RS — p(i"+2)i"+3
Combining (4.11)—(4.1) and (4.12), we have
Re(T), §;¢"*2) — Re(T}", 8,1"?)
1 1 S R T —
= Z(nn"“n2 — "1 + E(IIL(‘”e”“IIZ — |L@e"|I?) + Re(in"*2, T{") + Re(G"*2, §,¢"*2). (4.13)

According to the continuity of the function b, we have

bO"T2) — b(E"t 1) = B ENO™ I — i) < Co(le"]| + "),

where C; = %max |b'(€")| and &£" is on the segment that connects U" and u”.

From (3.11), we have
2
= sin(ERe(b(ﬁ"‘*%)F”%, u™ — ™) 4 arcsin(r" — €)) + e.

It means that
e—1 s e+1
Il =1 — < 7l
€+ sin(E (@""2)) + ¢ €—
Based on the boundedness in Theorem 4.5, we further have
73| b D)

| sin(E (")) + ¢

2 ~ntl 2 ~n+l
(1 = ——)| - [b@@""2)| < =1+ - [b@@" ™ 2)].
e+ 1 e—1
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As a result, when ¢ is sufficiently large, we have
;n+%b(ﬁn+%)
sin(E, (@ 1)) + ¢

where Cg is a positive constant. Specifically, to trade off the accuracy and efficiency, the parameter 1/e should be
much less than 72 + A*.
It means that

< Cylb(i"t2)),

S | 1 1 1 1
il Rn+§b(Un+§) Fn+§b(ﬁn+§) ! ;n+§b(ﬂn+§)
IG"2))? = | ———— e —— = |b0"2) = ———
sin(Ey(U""2) +¢  sin(E1(i"T2)) +¢ sin(E (i"t2)) 4+ ¢
~n-}—l ~n+l 2 ny 2 n—1,2
< Co |b(@"+3) = b@H|" = Cotlle” P + e 1P, (4.14)

where Co, Cj( are some positive constants independent of T and /.
Combining (4.13)—(4.14) with (4.1), using Cauchy—Schwarz inequality gives that

Re(T! — G"F2, §,¢"H7)
1 1
= Re(Ty — G2, "*2 + 1)
1Ty — G 2|2 4+ 77

IA

1 1 1
= 5IT - G" 2| + [In" 2|1 + | 7)1
l||n"“||2 + l||n"||2 + 17711
2 2 1
— 1 n 1 n n
< 7317 + Cro(lle" 1> + lle" %) + ik 2+ ik I+ 17712

1
175017 + 1G™ 2 |* +

IA

< Cu(lle" >+ e 1P+ 1™ 02 + ™ 12 4+ N TP + 1T, (4.15)
where Cy; = 1 + Cy. Combining (4.13) and (4.15), we deduce that

1
;(Iln”“ 12+ L™ %)
1
=5 I + 1L [P) + Re(T} G2, 8¢ 1) — Re(in 2, T}") — Re(T!", 8,7+ 7)
T
1 1 1 1
=5 (" 12+ IIL@e"|?) + Re(Ty' — G2, 8;"T2) — | T | In" ™| — Re(T}, 81" F2)

1 1 _
=5-Un" I+ IL®@e"[|*) — Re(T}, 87" 2) + Cri(lle” I* + lle" 1% + 1™ 1% + 1™ I1* + 1T 12 + 1 T3 1)
(4.16)

Replacing n by k in (4.16), we can obtain the recurrence by summing up for k from O to n as follows

n B n 1
F'* <FO+ Cior ) (b IP + e 17+ I 12 + Inf 1P + TP + I T30 — 21 ) Re(T, 8,0 2)
k=0 k=0

n n n |
<Cist Y _ (1 1P+ 1P + Coat Y AITEI + I T5 1P — 27 ) Re(TY, 8im*+2), (4.17)
k=0 k=0 k=0
where F" = [|[n"||* + [ L@e"|?, C1» = 2C); and ?13 =2Cys.
Computing the inner product of (4.1) with ¢"*2, and taking the real part, we get that
1 1 n 1 n _n L
57Ul = " I1%) = Re(y" 2, " 2) + Re(T}', ")

1 1 1
" 200" 2+ 177 e 2]

IA

A

1 1 1 1
§<||n"+i||2 + e 2| + T + etz )%
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IA

1 1 1
SU I eI + 12+ 1) + 51T

1
g(lle”+1 12+ le™ 17 4 ™12+ " 1% 4+ 1T 1P,

IA

where the Cauchy—Schwarz inequality has been used. It implies that
eI = e 12 < Tl 1P + Tl 1P + el I 4 I 4 1),

Let 0 < t < 1/4, using Lemma 4.3, we can get from (4.19) that

n n
"> < e Y AP+ 1P+ 1T < Cua Y I P + Cis(r),

k=0 k=0

where Ci4 = 2¢*T, Ci5 = e* Ci(b — a).
Thus we have

n n k
k+12 2 i+112 25\2
T NP < Clt? Y Y TR+ Cis(t?)
k=0 k=0 j=0
n n

< Cpt? Z Z /T2 + Ci5(c?)?

k=0 j=0

< CuTt ) I 1P + Cis(x?).
k=0

Combining (4.17) and (4.21) gives that

n B n l
FH <FO 4 Cor Y (e 1P 4+ 1 1P+ I 1P+ I I + TP + 1T — 22 ) (T, 8 +2)

k=0
n n n !
<Ciet Y 0" 1P + Cost Y _UTEIP + T3 1) — 27 Y _(Tf, 8,17 2),
k=0 k=0 k=0
where Cig = Ci3 + C13C14T. Using Lemma 4.2 again, it follows from (4.22) that

- 1 - 1
2 Y (T ot I < T Y I I+ S + Cia(?)
k=0 k=1
where Cy; = 2C,2e(b — a). Combining (4.22) with (4.23), we have

n+1

1
P+ LD < Cost 3 I 1P+ Sl A+ Cro(e® + B
k=1
where Cjg =14 Ci6 and Cjg = 2C13C12Q(b —a)T + Cy7.
That is,
1
S P L
n+1
<Cist Y _[In*I* + Cro(z® + h*)?
k=1
n+1 1
k2 2 452
<Cyt ; §||’7 1=+ Cio(z=+ h")
n+l1 1
<Cyt §<5||nk||2 + 1L [?) + Cro(r? + h*)>.
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Table 1
Errors and convergence order in space for Example 5.1 with different values of « and t = 1/10000.
h a=12 a=15 a=138
E(h, 1) Ord, E(h, 1) Ord, E(h, 1) Ord;
1/4 8.7786e—4 - 1.6000e—3 - 2.5000e—3 -
1/8 9.0697e—5 3.2749 1.5739e—4 3.3457 2.5351e—4 3.2967
1/16 5.4139e—6 4.0663 1.0634e—5 3.8875 1.9056e—5 3.7338
1/32 3.3103e—7 4.0317 6.7938e—7 3.9684 1.2465e—6 3.9343
1/64 1.9195¢—9 4.1081 4.0709¢—8 4.0608 7.7686e—8 4.0040

where Cyy = 2Cg. Further, we derive from Lemma 4.4 that
1" < Cou (@2 + 1Y, LD < Co(z® +1Y), 1=n <N, (4.24)
where Cy; = 2Cay = 2C9e?07T | Substituting (4.24) into (4.20) gives that

le" > < Crat Y I P + Cis(@)? < Coa(r? + AV,
k=0
where C23 = C15 + C14C%1T.
Applying Lemmas 3.1 and 4.1 again, we can obtain from above inequality that

e lloo < Cag(z? + ™),

2
where Coy = Cs_ [Ca3 + (C2+1)2 This proof is completed.
~3

42
3'x

5. Numerical experiments

In this section, we adopt numerical experiments to demonstrate our convergence results and discrete conservation
law. Denote calculation error E(h, T) = maxj<u<n |[#" — U" ||, Where u” and U" denote the exact solution (or
reference solution when the analytical solution is unknown) and numerical solution calculated by /# and 7 at time
t,, respectively.

Also, we define the convergence order in spatial and temporal directions, respectively, by

EhD) , Ord, = log, Ek.0)
Eh/2,7) Eh,7/2)

for sufficiently small t and #, respectively. Based on the previous analysis, to trade off the accuracy and efficiency,
the parameter 1/& should be much less than 72 + h*. Thus we take € = 1.0 x 10% in the simulations.

Ord; = log,

Example 5.1. We first consider the following problem with a source term:
i + (A Pu+ i, + ulPu= f(x,1),x € 2=1[0,1,0 <t < 1. (5.1)
The initial conditions and source term f(x, t) are determined by exact solution u(x, ) = (t + 1)°x*(1 — x)*.

In Tables 1 and 2, we list the errors and convergence orders in spatial and temporal directions, which are obtained
by fixing T and /& small enough, respectively. It is clearly observed that the convergence order is close to 4 in space
and 2 in time, which is consistent with our theoretical analysis.

For comparison, we calculated the errors and convergence order with respect to the T-SAV scheme (3.6)—(3.8),
SAV scheme in [2] and the three-level linearly implicit scheme in [9] for Example 5.1. The results are listed in
Table 3 for different 2 when t = 1/1000. It is easy to observe that the proposed method in this paper has smaller
error and higher convergence order.

It is worth noting that because the source term f(x, 7) is not equivalent to zero, the discrete energy conservation
law aforementioned in Theorem 3.4 is no longer valid, thus we here do not verify it.
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Table 2
Error and convergence order in time for Example 5.1 with different values of « and h = 1/100.
T a=12 a=15 a=138
E(h, 1) Ord, E(h, 1) Ord, E(h, 1) Ord,
1/4 3.3069e—4 - 3.5895e—4 - 3.7982e—4 -
1/8 8.3133e—5 1.9920 8.5296e—5 2.0732 9.7551e—5 1.9611
1/16 2.0794e—5 1.9993 2.1011e—5 2.0213 2.5058e—6 1.9609
1/32 5.2029e—6 1.9988 5.2362e—6 2.0046 6.3251e—6 1.9861
1/64 1.3024e—6 1.9981 1.3084e—6 2.0008 1.5876e—6 1.9943
Table 3
The comparison result of for the different values of « at t = 1.
Scheme h a=13 a=1.6
E(h, 1) Ord, E(h, 1) Ord,
T-SAV 1/4 1.11e-3 - 1.80e—3 -
1/8 1.13e—4 3.3024 1.82e—4 3.3454
1/16 7.09e—6 3.9938 1.26e—5 3.8522
1/32 4.50e—7 3.9745 8.14e—7 3.9498
1/64 2.71e—8 4.0554 491e—8 4.0500
SAV 1/4 7.26e—2 - 8.85e—2 -
1/8 1.66e—2 2.1250 2.0le—2 2.1388
1/16 441e-3 1.9169 4.64e-3 2.1115
1/32 1.49¢—3 1.5594 1.08e—3 2.0996
1/64 4.17e—4 1.8441 2.56e—4 2.0812
Linear-Implicit 1/4 3.51e-3 - 4.32e—3 -
1/8 7.95e—4 2.1424 8.97e—4 2.2679
1/16 1.98e—4 2.0055 2.24e—4 2.0016
1/32 4.97e-5 1.9942 5.6le—5 1.9974
1/64 1.23e—5 2.0146 1.42e—5 1.9821
Table 4
Discrete energy E" for different values of « at different times 7.
t a=12 a=15 a=138 a=20
0 3.319216214209640 4.683481252241875 6.901017658923674 9.124413226435424
10 3.319216213476719 4.683481251241374 6.901017658950430 9.124413226532425
20 3.319216214426772 4.683481251054013 6.901017658429924 9.124413226771185
30 3.319216214485132 4.683481251783468 6.901017658114058 9.124413227012433
40 3.319216215210285 4.683481251096453 6.901017658280851 9.124413227123945
50 3.319216214460822 4.683481250647293 6.901017658768502 9.124413226755323

Example 5.2. Consider the problem with unknown exact solution as follows

Uy + (=2%u +iu, + luPu=0, xe[=55] tel0,T]. (5.2)

The initial conditions are selected as u(x, 0) = (1 4+ i)x exp(—10(1 — x)?) and u,(x, 0) = 0.

To verify the energy-conserving of the difference scheme (3.6)—(3.8), we calculate the values of the discrete
energy E" for different values of « at different times ¢, see Table 4. It is easy to see from that the T-SAV scheme
(3.6)—(3.8) maintains the discrete energy well.

Also, the evolution of discrete energy E” over a longer time interval (T = 500) for different values of «
are depicted in Fig. 1 which indicates that the T-SAV scheme (3.6)—(3.8) captures the phenomenon of energy
conservation, and it is suitable for long-term simulation.
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Fig. 1. The evolution of discrete energy E” over time ¢ for different values of w.

6. Conclusion

In this paper, based on T-SAV approach, we proposed and analyzed the higher order energy-preserving difference
scheme for nonlinear space fractional Schrodinger equation with wave operator. It is proved that the solutions of the
difference scheme are energy-preserving, bounded, and convergent in maximum norm. Finally, numerical examples
for two fractional models illustrated that the proposed scheme can guarantee energy conservation of the system and
has accuracy of 4 in space and 2 in time. It should be noted that, as far as we know, there is no theoretical support
that the cosine value in Eq. (2.2) is always greater than 0, although the results based on various numerical examples
so far show that this treatment is successful.
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