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Abstract

This paper focuses on the construction and analysis of the structure-preserving algorithm for generalized fractional
chrödinger equation with wave operator. A fourth-order energy-conserving difference scheme is developed for the resulting
quivalent system based on scalar auxiliary variable approach. The discrete energy conservation law, boundedness and
onvergence of difference solutions are proved in detail. Numerical experiments are performed to verify our theoretical analysis
esults.

2023 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights
eserved.
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1. Introduction

In this paper, we consider the following nonlinear fractional Schrödinger equation with wave operator

ut t + (−∆)α/2u + iut + β f (|u|
2)u = 0, x ∈ R, t ∈ (0, T ], (1.1)

u(x, 0) = φ0(x), ut (x, 0) = φ1(x), x ∈ R, (1.2)

u(x, t) = 0, x ∈ R\Ω , t ∈ [0, T ], (1.3)

where i =
√

−1, 1 < α ≤ 2, and β is a positive constant, φ0(x) and φ1(x) are known smooth functions, u(x, t)
s the complex-valued wave function to be determined, the nonlinear term f is a given real function, −(−∆)α/2u
enotes the Riesz fractional derivative with order α, see [20].

As well known, many continuous systems possess some physical quantities that naturally arise from the physical
ontext, such as energy, momentum and mass. Therefore, many researchers have devoted themselves to constructing
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numerical methods for preserving the inherent invariants of the original system as much as possible. In terms of
this model (1.1)–(1.3), which preserves the energy conservation law as follows

E(t) = ∥ut (·, t)∥2
+ ∥(−∆)α/4u(·, t)∥2

+
β

2

∫
R

F(|u|
2)dx, (1.4)

here F(s) =
∫ s

0 f (z)dz, see [1,9]. When α = 2, this model (1.1)–(1.3) is simplified to the classical Schrödinger
quation with wave operator. Over the past three decades, a great deal of research results has been developed on
he classical equations. For example, Bao et al. [1] proposed a difference method and studied the uniform error
stimates, Li et al. [7] constructed a compact difference scheme, Wang et al. [16] given discrete-time orthogonal
pline collocation method, Guo et al. [5] developed an energy conserving local discontinuous Galerkin method.

With the development of fractional calculus, researchers pay more and more attention to the study of fractional
odels. For example, Ran and Zhang [9] developed a three-level linearly implicit conservative difference scheme

or this model (1.1)–(1.3), Cheng and Wu [3] proposed several conservative compact difference schemes for the
ame model. Some energy-preserving difference schemes for the single and coupled fractional nonlinear Schrödinger
quations without wave operator has also been proposed, see [8,13,15].

However, most of the energy-preserving schemes mentioned above are either completely implicit or multi-layered
nd low accuracy. A few are constructed with a linear energy-preserving scheme with high-order accuracy for
ractional models. The aim of this paper is to develop an energy-preserving and linear numerical scheme with higher-
rder accuracy for this problem (1.1)–(1.3) based on triangular scalar auxiliary variable (T-SAV) approach proposed
n recent years. The ideas and application of SAV approaches, please refer to [4,10–12,18,19]. The advantage of
AV approaches is that nonlinear terms in equations can be treated semi-explicitly. Compared with traditional SAV
pproach, T-SAV approach adopted in this paper inherits all the advantages of SAV approach, and overcomes some
isadvantages such as the nonlinear free energy potential must be bounded from below and an inner product must
e calculated to calculate un+1, see [19].

This article is organized as follows. In Section 2, we introduce the T-SAV approach to rewrite the model (1.1)–
1.3) as an equivalent form. In Section 3, we construct a fourth-order difference scheme for the resulting equivalent
ystem and prove the discrete energy conservation law. In Section 4, the boundedness and convergence of the
ifference solutions are discussed. In Section 5, some numerical experiments are given to verify the theoretical
esults.

. Equivalent system

In order to construct an energy-preserving and linear numerical scheme for solving the problem (1.1)–(1.3), it
s necessary to rewrite this problem into its equivalent system by using the T-SAV approach. To do this, let us
ntroduce a triangular scalar auxiliary variable as

r (t) = sin(E1(u)) + ε,

here

E1(u) =

∫
Ω

F(|u|
2)dx,

nd ε is a constant. To ensure that the value of r remains positive, ε has to be greater than 1. Moreover, we usually
hoose an ε large enough such that r (t) is much greater than zero to avoid singularity, see [19].

As a result, we have
dr
dt

= cos(E1(u))
d E1(u)

dt
= cos(E1(u))

d
dt

∫
Ω

F(|u|
2)dx . (2.1)

Noticing that sin2(E1(u)) + cos2(E1(u)) = 1, we take

cos(E1(u)) =

√
1 − sin2(E1(u)) =

√
1 − (r − ε)2. (2.2)

It follows from (2.1) that
1√

2

dr
=

d E1(u)
=

d
∫

F(|u|
2)dx . (2.3)
1 − (r − ε) dt dt dt Ω
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Taking the derivative of the arcsine function we get

d
dt

(arcsin(r − ε)) =
1√

1 − (r − ε)2

dr
dt

. (2.4)

Substituting (2.3) into the right side of (2.4), and we get immediately that

d
dt

(arcsin(r − ε)) =
d E1(u)

dt
=

d
dt

∫
Ω

F(|u|
2)dx =

∫
Ω

f (|u|
2)(uūt + ut ū)dx = 2Re(

∫
Ω

f (|u|
2)uūt dx).

hus Eq. (1.1) can be transformed into an equivalent system as follows

ut = v, (2.5)

vt = −(−∆)α/2u − iv − b(u)r, (2.6)
d
dt

arcsin(r − ε) =
2
β

Re(b(u)r, ut ), (2.7)

where b(u) =
β f (|u|

2)u
sin(E1(u))+ε

.
For the resulting equivalent system (2.5)–(2.7), we have the following result.

Theorem 2.1. The equivalent system (2.5)–(2.7) possess modified energy conservation law as follows

E(t) = E(0), (2.8)

where

E(t) = ∥ut∥
2
+ ∥(−∆)α/4u∥

2
+ β arcsin(r − ε) = ∥v∥

2
+ ∥(−∆)α/4u∥

2
+ β arcsin(r − ε). (2.9)

Proof. Computing the inner product of (2.6) with ut and taking the real part derives

Re(vt , ut ) = −Re((−∆)α/2u, ut ) − Re(iv, ut ) − Re(b(u)r, ut ). (2.10)

Noticing that

Re(vt , ut ) =
1
2

d
dt

∥ut∥
2, Re((−∆)α/2u, ut ) =

1
2

d
dt

∥(−∆)α/4u∥
2,

nd (2.7), we can obtain

d E(t)
dt

= 0.

That is,

E(t) = E(0).

The second equation in (2.9) can be obtained by using (2.5). This proof is completed.

3. High-order energy-conserving difference scheme

In this section, we will first establish a high-order difference scheme and then analyze the discrete energy
conservation property of the proposed scheme.

3.1. Preparation

Let Z be integer field. Denote x j = jh for j ∈ Z and hZ = { jh | j ∈ Z}. For any grid functions u, v on hZ,
define the discrete inner product and norms as

(u, v) = h
∑

u j v̄ j , ∥u∥ =

√
(u, u), ∥u∥∞ = sup

j∈Z
|u j |.
j∈Z
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Set L2
h = {un

j ∈ C : ∥un
∥ < +∞}, where C denotes complex field. For un

∈ L2
h , we denote the discrete Fourier

ransform ûn : [−π, π] by

ûn(ω) =
1

√
2π

+∞∑
j=−∞

un
j e

−i jω.

Moreover, we have the inversion formula

un
j =

1
√

2π

∫
+π/h

−π/h
ûn(ω)v̂n(ω)dω,

and Parseval’s theorem

(u, v) =

∫
+π/h

−π/h
ûn(ω)v̂n(ω)dω.

lso, for constant 0 ≤ δ ≤ 1 and u ∈ L2
h , define fractional Sobolev norm ∥u∥Hδ and semi-norm |u|Hδ as

∥u∥
2
Hδ = h

∫ π

−π

(1 + |ω|
2δ)|û(ω)|2dω , |u|

2
Hδ = h

∫ π

−π

|ω|
2δ

|û(ω)|2dω.

rom Parseval’s theorem, it is clear that ∥u∥
2
Hδ = ∥u∥

2
+ |u|

2
Hδ and |u|

2
H0 = ∥u∥

2.
The following lemmas are also crucial in the derivation and analysis of the difference scheme.

emma 3.1 (Discrete Uniform Sobolev Inequality, [14]). For every 1/2 < δ ≤ 1, there exists a constant Cδ > 0
independent of h such that

∥u∥∞ ≤ Cδ∥u∥Hδ .

Lemma 3.2 ([17]). Suppose

u ∈ C 4+α(R) = {v|v ∈ L1(R),
∫

∞

−∞

(1 + |ϖ |)4+α
|v̂(ϖ ) | dϖ < ∞},

here v̂(ϖ ) is the Fourier transform with respect to v(x), i.e.,

v̂(ϖ ) =

∫
∞

−∞

v(x)e−iϖ x dx .

hen, we have

(−∆)α/2u(x) =
1

hα

+∞∑
k=−∞

ĝ(α)
k u(x − kh) + O(h4) = δα

h u(x) + O(h4), (3.1)

here

ĝ(α)
k =

{
4
3 g(α)

k −
1

3·2α g(α)
k
2

, k is even,
4
3 g(α)

k , k is odd,

n which

g(α)
k =

(
1 −

α + 1
α/2 + k

)
g(α)

k−1 and g(α)
0 =

Γ (α + 1)
Γ 2(α/2 + 1)

, k = 1, 2, . . . .

.2. Derivation of the difference scheme

Without loss of generality, denote Ω = (a, b). Let τ = T/N be the temporal step size and h = (b − a)/M be
patial step size, where N and M are given positive integers. Denote tn = nτ (0 ≤ n ≤ N ), x j = a + jh(0 ≤

j ≤ M),Ωτ = {tn | 0 ≤ n ≤ N } and Ωh = {x j | 0 ≤ j ≤ M}. Define the grid function space
Vh = {v = {v j } | 0 ≤ j ≤ M} and denote V 0

h = {v | v ∈ Vh and v0 = vM = 0}. For any grid function
n

∈ Vh , we denote

δtv
n+

1
2

=
vn+1

j − vn
j
, δxv

n
=

vn
j+1 − vn

j
, v

n+
1
2

=
vn+1

j + vn
j
, ṽ

n+
1
2

=
3vn

j − vn−1
j

.
j τ j h j 2 j 2
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Using Taylor’s expansion, and applying the fourth-order fractional central difference approximation (3.1) in space
nd Crank–Nicolson method in time to equivalent system (2.5)–(2.7) gives that

δtU
n+

1
2

j = V
n+

1
2

j + T n
1 , (3.2)

δt V
n+

1
2

j = −δα
h U

n+
1
2

j − iV
n+

1
2

j − b(Ũ n+
1
2 )R̃n+

1
2 + T n

2 , (3.3)

δt arcsin(Rn+
1
2 − ε) =

2
β

Re(b(Ũ n+
1
2 )R̃n+

1
2 , δtU n+

1
2 ) + T n

3 , (3.4)

where there is a positive constant CR such that

max{|T n
1 |, |δt T n

1 |, |T n
3 |} ≤ CRτ 2, max{|T n

2 |} ≤ CR(τ 2
+ h4), 0 ≤ n ≤ N , (3.5)

with Ũ
n+

1
2

j = (3U n
j − U n−1

j )/2 for n ≥ 1, but Ũ
1
2
j = U 0

j .
Omitting the error terms in (3.2)–(3.4), and replacing U, V and R by u, v and r respectively, we can obtain the

finite difference scheme which reads as

δt u
n+

1
2

j = v
n+

1
2

j , (3.6)

δtv
n+

1
2

j = −δα
h u

n+
1
2

j − iv
n+

1
2

j − b(ũn+
1
2 )r̃n+

1
2 , (3.7)

δt arcsin(rn+
1
2 − ε) =

2
β

Re(b(ũn+
1
2 )r̃n+

1
2 , δt un+

1
2 ). (3.8)

Denote

un
= (un

1, un
2, . . . , un

M−1)T , vn
= (vn

1 , vn
2 , . . . , vn

M−1)T ,

he difference scheme (3.6)–(3.8) can be rewritten in the vector form

δt un+
1
2 = vn+

1
2 , (3.9)

δtv
n+

1
2 = −A(α)un+

1
2 − ivn+

1
2 − b(ũn+

1
2 )r̃n+

1
2 , (3.10)

δt arcsin(rn+
1
2 − ε) =

2
β

Re(b(ũn+
1
2 )r̃n+

1
2 , δt un+

1
2 ), (3.11)

where

A(α)
=

1
hα

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ĝ(α)
0 ĝ(α)

−1 ĝ(α)
−2 · · · ĝ(α)

−M+4 ĝ(α)
−M+3 ĝ(α)

−M+2

ĝ(α)
1 ĝ(α)

0 ĝ(α)
−1 · · · ĝ(α)

−M+5 ĝ(α)
−M+4 ĝ(α)

−M+3

ĝ(α)
2 ĝ(α)

1 ĝ(α)
0 · · · ĝ(α)

−M+6 ĝ(α)
−M+5 ĝ(α)

−M+4
...

...
...

. . .
...

...
...

ĝ(α)
M−4 ĝ(α)

M−5 ĝ(α)
M−6 · · · ĝ(α)

0 ĝ(α)
−1 ĝ(α)

−2

ĝ(α)
M−3 ĝ(α)

M−4 ĝ(α)
M−5 · · · ĝ(α)

1 ĝ(α)
0 ĝ(α)

−1

ĝ(α)
M−2 ĝ(α)

M−3 ĝ(α)
M−4 · · · ĝ(α)

2 ĝ(α)
1 ĝ(α)

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

It is worth noting that A(α) corresponding to the operator δα
h is symmetric Toeplitz matrix since the coefficients

g(α)
k defined in Lemma 3.2 satisfy that [17]

ĝ(α)
0 > 0, ĝ(α)

k = ĝ(α)
−k < 0,

+∞∑
k=−∞

ĝ(α)
k = 0.

The above equivalent form (3.9)–(3.11) is only used in programming implementation.

.3. Discrete energy conservation law

In this subsection, we focus on the conservation of the difference scheme (3.6)–(3.8), and the following lemmas
re firstly introduced.
536
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Lemma 3.3 ([17]). For any grid functions vn
∈ V 0

h , there exists a linear operator L (α) such that

Im(δα
h vn+

1
2 , vn+

1
2 ) = 0, Re(δα

h vn+
1
2 , δtv

n+
1
2 ) =

1
2τ

(∥L (α)vn+1
∥

2
− ∥L (α)vn

∥
2).

Based on the previous preparation, we can prove the following result.

heorem 3.4. The difference scheme (3.6)–(3.8) is energy-conserving, i.e., it satisfies that

En
= E0, 1 ≤ n ≤ N ,

here

En
= ∥vn

∥
2
+ ∥L (α)un

∥
2
+ β arcsin(rn

− ε).

roof. Computing the inner product of (3.6) with δtv
n+

1
2 , and taking the real part, we have

Re(δt un+
1
2 , δtv

n+
1
2 ) = Re(vn+

1
2 , δtv

n+
1
2 ) =

1
2τ

(∥vn+1
∥

2
− ∥vn

∥
2). (3.12)

imilarly, computing the inner product of (3.7) with δt un+
1
2 and taking the real part, we obtain

Re(δtv
n+

1
2 , δt un+

1
2 ) = −Re(δα

h un+
1
2 , δt un+

1
2 ) − Re(ivn+

1
2 , δt un+

1
2 ) − Re(b(ũn+

1
2 )r̃n+

1
2 , δt un+

1
2 ). (3.13)

Using Lemma 3.3, we have

Re(δα
h un+

1
2 , δt un+

1
2 ) =

1
2τ

(∥L (α)un+1
∥

2
− ∥L (α)un

∥
2). (3.14)

lso, it follows from (3.6) that

Re(ivn+
1
2 , δt un+

1
2 ) = Re(ivn+

1
2 , vn+

1
2 ) = 0. (3.15)

Combining (3.12)–(3.14) with (3.8), it holds that

En+1
= En, 1 ≤ n ≤ N ,

where

En
= ∥vn

∥
2
+ ∥L (α)un

∥
2
+ β arcsin(rn

− ε).

It completes the proof.

4. Boundedness and convergence

In this section, let us turn our attention to the boundedness and convergence of solutions of the difference scheme
(3.6)–(3.8).

4.1. Boundedness

The following lemmas are important tools in proving the boundedness of difference solution.

Lemma 4.1 ([17]). For 1 < α ≤ 2, we have(
4
3
|

2
π

|

α

−
1
3

)
|un

|Hα/2 ≤ (δα
h un, un) ≤

(
4
3

−
1
3
|

2
π

|

α)
|un

|Hα/2 .

Lemma 4.2 ([6]). For time sequences w = {w0, w1, . . . , wn
} and g = {g0, g1, . . . , gn

}, there is

|2τ

n∑
gkδtw

k+
1
2 | ≤ τ

n∑
|wk

|
2
+ τ

n−1∑
|δt gk+

1
2 |

2
+

1
2
|wn+1

|
2
+ 2|gn

|
2
+ |w0

|
2
+ |g0

|
2
.

k=0 k=1 k=0
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Lemma 4.3 (Gronwall inequality I, [21]). Suppose that the discrete grid function {wn
| n = 0, 1, . . . , N ; Nτ = T }

atisfies the following inequality

wn
− wn−1

≤ Aτwn
+ Bτwn−1

+ Cnτ,

here A, B and Cn are non-negative constants, then

max
1≤n≤N

|wn
| ≤

(
w0

+ τ

N∑
k=1

Ck

)
e2(A+B)T ,

here τ is sufficiently small, such that (A + B)τ ≤
N−1
2N < 1

2 (N > 1).

Lemma 4.4 (Gronwall inequality II, [21]). Suppose that the discrete grid function {wn
| n = 0, 1, . . . , N } satisfies

the following inequality

wn
≤ A + τ

n∑
k=1

Bkw
k,

where A and Bk are non-negative constants, then we have

max
1≤n≤N

|wn
| ≤ A exp

(
2τ

N∑
k=1

Bk

)
,

where τ is sufficiently small, such that τ max1≤k≤N Bk ≤ 1/2.

Based on above lemmas, we can prove the following boundedness result.

Theorem 4.5. Suppose nonlinear energy functional bounded from below, then we have estimates as follows:

∥un
∥∞ ≤ C, 1 ≤ n ≤ N ,

where C is a positive constant which is independent of τ and h.

Proof. It follows from Theorem 3.4, there exists a constant C such that

En
= ∥vn

∥
2
+ ∥L (α)un

∥
2
+ β arcsin(rn

− ε) = E0
= C.

It implies that

∥vn
∥ ≤ C, ∥L (α)un

∥ ≤ C.

Computing the inner product of (3.9) with un+
1
2 , taking the real part, gives that

1
2τ

(∥un+1
∥

2
− ∥un

∥
2) = Re(vn+

1
2 , un+

1
2 ) ≤ ∥vn+

1
2 ∥(∥un+1

∥ + ∥un
∥)/2 ≤ C(∥un+1

∥ + ∥un
∥)/2.

hat is,

∥un+1
∥ − ∥un

∥ ≤ Cτ.

oticing that nτ ≤ T , and summing up the above inequality for n from 0 to n yields

∥un
∥ ≤ C.

From Lemma 3.1, there is a positive constant δ ∈ (1/2, 1] such that

∥u∥
2
∞

≤ C2
δ ∥u∥

2
Hδ = C2

δ (∥u∥
2
+ |u|

2
Hδ ).

oticing that (δα
h un, un) = ∥L (α)un

∥
2, using Lemma 4.1 yields that

∥u∥
2
∞

≤ C2
δ

(
C +

(δα
h un, un)2

( 4
3 |

2
π
|
2δ

−
1
3 )2

)
= C2

δ

(
C +

∥L (α)un
∥

4

( 4
3 |

2
π
|
2δ

−
1
3 )2

)
≤ C.

This proof is completed.
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4.2. Convergence

Now we turn to the convergence of solutions of the difference scheme (3.8)–(3.10).
Let en

j = U n
j − un

j , then we can obtain the following convergence results.

heorem 4.6. Assuming that the solution of the problem (1.1)–(1.3) is sufficiently smooth, then the solution of
difference scheme (3.6)–(3.8) satisfies that

∥en
∥∞ ≤ C(τ 2

+ h4), 1 ≤ n ≤ N .

when τ < tau0, and C and τ0 are positive constants independent of τ and h.

Proof. Subtracting (3.6)–(3.8) from (3.2)–(3.4), we obtain error system as follows

δt en+
1
2 = ηn+

1
2 + T n

1 , (4.1)

δtη
n+

1
2 = −δα

h en+
1
2 − iηn+

1
2 − (b(Ũ n+

1
2 )R̃n+

1
2 − b(ũn+

1
2 )r̃n+

1
2 ) + T n

2 , (4.2)

δtζ
n+

1
2 =

2
β

[Re(b(Ũ n+
1
2 )R̃n+

1
2 , δtU n+

1
2 ) − Re(b(ũn+

1
2 )r̃n+

1
2 , δt un+

1
2 )] + T n

3 , (4.3)

where ηn
= V n

− vn, ζ n
= arcsin(Rn

− ε) − arcsin(rn
− ε).

(I) First we consider the convergence result when n = 0. From (1.2), we get

∥e0
∥ = 0, ∥η0

∥ = 0. (4.4)

Computing the inner product of (4.1) with δtη
1
2 , and taking the real part, we obtain

Re(δt e
1
2 , δtη

1
2 ) = Re(η

1
2 , δtη

1
2 ) + Re(T 0

1 , δtη
1
2 ) =

1
2τ

∥η1
∥

2
+

1
τ

Re(T 0
1 , η1). (4.5)

Similarly, computing the inner product of (4.2) with δt e
1
2 , and taking the real part, we have

Re(δtη
1
2 , δt e

1
2 ) = −Re(δα

h e
1
2 , δt e

1
2 ) − Re(iη

1
2 , δt e

1
2 ) − Re(G

1
2 , δt e

1
2 ) + Re(T 0

2 , δt e
1
2 )

= −
1

2τ
∥L (α)e1

∥
2
− Re(iη

1
2 , η

1
2 + T 0

1 ) − Re(G
1
2 , δt e

1
2 ) + Re(T 0

2 , δt e
1
2 ),

(4.6)

where

G
1
2 = g(Ũ

1
2 ) − g(ũ

1
2 )

with g(u) = β f (|u|
2)u. According to the continuity of the function g, we have

G
1
2 = g(Ũ

1
2 ) − g(ũ

1
2 ) = g′(ξ n)(Ũ

1
2 − ũ

1
2 ) ≤ C1|e1

|,

where C1 =
3
2 max |g′(ξ n)| and ξ n is on the segment that connects U n and un .

Moreover, by using (4.1) and (4.4), it follows that

∥e1
∥ ≤

τ

2
∥η1

∥ + τ∥T 0
1 ∥. (4.7)

This combining with (4.5)–(4.6) and C2 > 2C1 gives that

∥η1
∥

2
+ ∥L (α)e1

∥
2

= − 2Re(T 0
1 , η1) − τRe(iη1, T 0

1 ) + 2Re(T 0
2 , e1) − 2Re(G

1
2 , e1)

≤ 2Re(T 0
1 , η1) + τRe(iη1, T 0

1 ) + 2Re(T 0
2 , e1) + 2C2∥e1

∥
2

≤ [(2 + τ )τ∥T 0
1 ∥ + τ∥T 0

2 ∥]2
+

1
4
∥η1

∥
2
+ 2τ∥T 0

1 ∥∥T 0
2 ∥ +

3C2τ
2

2
∥η1

∥
2
+ 3C2τ

2
∥T 0

1 ∥
2.
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Let C2τ
2

≤ 1/3, by virtue of (3.5), we have

∥η1
∥

2
+ ∥L (α)e1

∥
2

≤ [(2 + τ )τ∥T 0
1 ∥ + τ∥T 0

2 ∥]2
+

3
4
∥η1

∥
2
+ 2τ∥T 0

1 ∥∥T 0
2 ∥ + ∥T 0

1 ∥
2

≤ 4[(2 + τ )
√

(b − a)CRτ 2
+ τ

√
(b − a)CR(τ 2

+ h4)]2
+ 2τ (b − a)CR

2τ 2(τ 2
+ h4) + (b − a)CR

2τ 4

≤ C3(τ 2
+ h4)2,

here C3 = [26T + 16T 2
+ 17](b − a)C2

R . It implies that

∥η1
∥ ≤ C4(τ 2

+ h4), ∥L (α)e1
∥ ≤ C4(τ 2

+ h4). (4.8)

here C4 =
√

C3. According to the estimate in (4.7), we obtain

∥e1
∥ ≤ C5(τ 2

+ h4), (4.9)

where C5 = ( 1
2 C4 +

√
b − aCR)T .

Applying Lemmas 3.1 and 4.1 and combining the second inequality in (4.8), we have

∥e1
∥∞ ≤ C6(τ 2

+ h4), (4.10)

where C6 = Cδ

√
C2

5 +
C2

4

( 4
3 |

2
π |

2δ
−

1
3 )2

and δ is an arbitrary constant between 1/2 and 1.

(II) Now we consider the convergence for n ⩾ 1.
Computing the inner product of (4.1) with δtη

n+
1
2 , and taking the real part yields that

Re(δt en+
1
2 , δtη

n+
1
2 ) = Re(ηn+

1
2 , δtη

n+
1
2 ) + Re(T n

1 , δtη
n+

1
2 )

=
1

2τ
(∥ηn+1

∥
2
− ∥ηn

∥
2) + Re(T n

1 , δtη
n+

1
2 ).

(4.11)

Computing the discrete inner product of (4.2) with δt en+
1
2 , and taking the real part gives that

Re(T n
2 , δt en+

1
2 )

= Re(δtη
n+

1
2 , δt en+

1
2 ) + Re(δα

h en+
1
2 , δt en+

1
2 ) + Re(iηn+

1
2 , δt en+

1
2 ) + Re(Gn+

1
2 , δt en+

1
2 ). (4.12)

where Gn+
1
2 = b(Ũ n+

1
2 )R̃n+

1
2 − b(ũn+

1
2 )r̃n+

1
2 .

Combining (4.11)–(4.1) and (4.12), we have

Re(T n
2 , δt en+

1
2 ) − Re(T n

1 , δtη
n+

1
2 )

=
1

2τ
(∥ηn+1

∥
2
− ∥ηn

∥
2) +

1
2τ

(∥L (α)en+1
∥

2
− ∥L (α)en

∥
2) + Re(iηn+

1
2 , T n

1 ) + Re(Gn+
1
2 , δt en+

1
2 ). (4.13)

According to the continuity of the function b, we have

b(Ũ n+
1
2 ) − b(ũn+

1
2 ) = b′(ξ n)(Ũ n+

1
2 − ũn+

1
2 ) ≤ C7(|en

| + |en−1
|),

here C7 =
3
2 max |b′(ξ n)| and ξ n is on the segment that connects U n and un .

From (3.11), we have

rn+1
= sin(

2
β

Re(b(ũn+
1
2 )r̃n+

1
2 , un+1

− un) + arcsin(rn
− ε)) + ε.

It means that

|
ε − 1
ε + 1

| ≤ |
r̃n+

1
2

sin(E1(ũn+
1
2 )) + ε

| ≤ |
ε + 1
ε − 1

|.

Based on the boundedness in Theorem 4.5, we further have

|(1 −
2

)| · |b(ũn+
1
2 )| ≤

|r̃n+
1
2 | · |b(ũn+

1
2 )|

n+
1 ≤ |(1 +

2
)| · |b(ũn+

1
2 )|.
ε + 1 | sin(E1(ũ 2 )) + ε| ε − 1
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As a result, when ε is sufficiently large, we have

r̃n+
1
2 b(ũn+

1
2 )

sin(E1(ũn+
1
2 )) + ε

≤ C8|b(ũn+
1
2 )|,

here C8 is a positive constant. Specifically, to trade off the accuracy and efficiency, the parameter 1/ε should be
much less than τ 2

+ h4.
It means that

∥Gn+
1
2 ∥

2
=

 R̃n+
1
2 b(Ũ n+

1
2 )

sin(E1(Ũ n+
1
2 )) + ε

−
r̃n+

1
2 b(ũn+

1
2 )

sin(E1(ũn+
1
2 )) + ε


2

=

b(Ũ n+
1
2 ) −

r̃n+
1
2 b(ũn+

1
2 )

sin(E1(ũn+
1
2 )) + ε


2

≤ C9

b(Ũ n+
1
2 ) − b(ũn+

1
2 )
2

≤ C10(∥en
∥

2
+ ∥en−1

∥
2), (4.14)

here C9, C10 are some positive constants independent of τ and h.
Combining (4.13)–(4.14) with (4.1), using Cauchy–Schwarz inequality gives that

Re(T n
2 − Gn+

1
2 , δt en+

1
2 )

= Re(T n
2 − Gn+

1
2 , ηn+

1
2 + T n

1 )

≤ ∥T n
2 − Gn+

1
2 ∥∥ηn+

1
2 + T n

1 ∥

≤
1
2
∥T n

2 − Gn+
1
2 ∥

2
+ ∥ηn+

1
2 ∥

2
+ ∥T n

1 ∥
2

≤ ∥T n
2 ∥

2
+ ∥Gn+

1
2 ∥

2
+

1
2
∥ηn+1

∥
2
+

1
2
∥ηn

∥
2
+ ∥T n

1 ∥
2

≤ ∥T n
2 ∥

2
+ C10(∥en

∥
2
+ ∥en−1

∥
2) +

1
2
∥ηn+1

∥
2
+

1
2
∥ηn

∥
2
+ ∥T n

1 ∥
2

≤ C11(∥en
∥

2
+ ∥en−1

∥
2
+ ∥ηn+1

∥
2
+ ∥ηn

∥
2
+ ∥T n

1 ∥
2
+ ∥T n

2 ∥
2), (4.15)

here C11 = 1 + C10. Combining (4.13) and (4.15), we deduce that
1

2τ
(∥ηn+1

∥
2
+ ∥L (α)en+1

∥
2)

=
1

2τ
(∥ηn

∥
2
+ ∥L (α)en

∥
2) + Re(T n

2 − Gn+
1
2 , δt en+

1
2 ) − Re(iηn+

1
2 , T n

1 ) − Re(T n
1 , δtη

n+
1
2 )

≤
1

2τ
(∥ηn

∥
2
+ ∥L (α)en

∥
2) + Re(T n

2 − Gn+
1
2 , δt en+

1
2 ) − ∥T n

1 ∥∥ηn+1
∥ − Re(T n

1 , δtη
n+

1
2 )

≤
1

2τ
(∥ηn

∥
2
+ ∥L (α)en

∥
2) − Re(T n

1 , δtη
n+

1
2 ) + C11(∥en

∥
2
+ ∥en−1

∥
2
+ ∥ηn+1

∥
2
+ ∥ηn

∥
2
+ ∥T n

1 ∥
2
+ ∥T n

2 ∥
2).

(4.16)

Replacing n by k in (4.16), we can obtain the recurrence by summing up for k from 0 to n as follows

Fn+1
≤F0

+ C12τ

n∑
k=0

(∥ek
∥

2
+ ∥ek−1

∥
2
+ ∥ηk+1

∥
2
+ ∥ηk

∥
2
+ ∥T k

1 ∥
2
+ ∥T k

2 ∥
2) − 2τ

n∑
k=0

Re(T k
1 , δtη

k+
1
2 )

≤C13τ

n∑
k=0

(∥ek+1
∥

2
+ ∥ηk+1

∥
2) + C12τ

n∑
k=0

(∥T k
1 ∥

2
+ ∥T k

2 ∥
2) − 2τ

n∑
k=0

Re(T k
1 , δtη

k+
1
2 ), (4.17)

where Fn
= ∥ηn

∥
2
+ ∥L (α)en

∥
2, C12 = 2C11 and C13 = 2C12.

Computing the inner product of (4.1) with en+
1
2 , and taking the real part, we get that

1
2τ

(∥en+1
∥

2
− ∥en

∥
2) = Re(ηn+

1
2 , en+

1
2 ) + Re(T n

1 , en+
1
2 )

≤ ∥ηn+
1
2 ∥∥en+

1
2 ∥ + ∥T n

1 ∥∥en+
1
2 ∥

≤
1

(∥ηn+
1
2 ∥

2
+ ∥en+

1
2 ∥

2
+ ∥T n

∥
2
+ ∥en+

1
2 ∥

2)

2 1
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≤
1
2

(∥en+1
∥

2
+ ∥en

∥
2) +

1
4

(∥ηn+1
∥

2
+ ∥ηn

∥
2) +

1
2
∥T n

1 ∥
2

≤
1
2

(∥en+1
∥

2
+ ∥en

∥
2
+ ∥ηn+1

∥
2
+ ∥ηn

∥
2
+ ∥T n

1 ∥
2), (4.18)

where the Cauchy–Schwarz inequality has been used. It implies that

∥en+1
∥

2
− ∥en

∥
2

≤ τ∥en+1
∥

2
+ τ∥en

∥
2
+ τ (∥ηn+1

∥
2
+ ∥ηn

∥
2
+ ∥T n

1 ∥
2). (4.19)

Let 0 < τ ≤ 1/4, using Lemma 4.3, we can get from (4.19) that

∥en+1
∥

2
≤ e4T τ

n∑
k=0

(∥ηk+1
∥

2
+ ∥ηk

∥
2
+ ∥T k

1 ∥
2) ≤ C14τ

n∑
k=0

∥ηk+1
∥

2
+ C15(τ 2)2, (4.20)

here C14 = 2e4T , C15 = e4T C2
R(b − a).

Thus we have

τ

n∑
k=0

∥ek+1
∥

2
≤ C14τ

2
n∑

k=0

k∑
j=0

∥η j+1
∥

2
+ C15(τ 2)2

≤ C14τ
2

n∑
k=0

n∑
j=0

∥η j+1
∥

2
+ C15(τ 2)2

≤ C14T τ

n∑
k=0

∥ηk+1
∥

2
+ C15(τ 2)2. (4.21)

ombining (4.17) and (4.21) gives that

Fn+1
≤F0

+ C12τ

n∑
k=0

(∥ek
∥

2
+ ∥ek−1

∥
2
+ ∥ηk+1

∥
2
+ ∥ηk

∥
2
+ ∥T k

1 ∥
2
+ ∥T k

2 ∥
2) − 2τ

n∑
k=0

(T k
1 , δtη

k+
1
2 )

≤C16τ

n∑
k=0

∥ηk+1
∥

2
+ C13τ

n∑
k=0

(∥T k
1 ∥

2
+ ∥T k

2 ∥
2) − 2τ

n∑
k=0

(T k
1 , δtη

k+
1
2 ), (4.22)

where C16 = C13 + C13C14T . Using Lemma 4.2 again, it follows from (4.22) that

|2τ

n∑
k=0

(T k
1 , δtη

k+
1
2 )| ≤ τ

n∑
k=1

∥ηk
∥

2
+

1
2
∥ηn+1

∥
2
+ C17(τ 2)2. (4.23)

here C17 = 2C2
R(b − a). Combining (4.22) with (4.23), we have

∥ηn+1
∥

2
+ ∥L (α)en+1

∥
2

≤ C18τ

n+1∑
k=1

∥ηk
∥

2
+

1
2
∥ηn+1

∥
2
+ C19(τ 2

+ h4)2.

here C18 = 1 + C16 and C19 = 2C13C2
R(b − a)T + C17.

That is,
1
2
∥ηn+1

∥
2
+ ∥L (α)en+1

∥
2

≤C18τ

n+1∑
k=1

∥ηk
∥

2
+ C19(τ 2

+ h4)2

≤C20τ

n+1∑
k=1

1
2
∥ηk

∥
2
+ C19(τ 2

+ h4)2

≤C20τ

n+1∑
k=1

(
1
2
∥ηk

∥
2
+ ∥L (α)ek

∥
2) + C19(τ 2

+ h4)2.
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Table 1
Errors and convergence order in space for Example 5.1 with different values of α and τ = 1/10000.

h α = 1.2 α = 1.5 α = 1.8

E(h, τ ) Ord1 E(h, τ ) Ord1 E(h, τ ) Ord1

1/4 8.7786e−4 – 1.6000e−3 – 2.5000e−3 –
1/8 9.0697e−5 3.2749 1.5739e−4 3.3457 2.5351e−4 3.2967
1/16 5.4139e−6 4.0663 1.0634e−5 3.8875 1.9056e−5 3.7338
1/32 3.3103e−7 4.0317 6.7938e−7 3.9684 1.2465e−6 3.9343
1/64 1.9195e−9 4.1081 4.0709e−8 4.0608 7.7686e−8 4.0040

where C20 = 2C18. Further, we derive from Lemma 4.4 that

∥ηn+1
∥

2
≤ C21(τ 2

+ h4), ∥L (α)en+1
∥

2
≤ C22(τ 2

+ h4), 1 ≤ n ≤ N , (4.24)

here C21 = 2C22 = 2C19e2C20T . Substituting (4.24) into (4.20) gives that

∥en+1
∥

2
≤ C14τ

n∑
k=0

∥ηk+1
∥

2
+ C15(τ 2)2

≤ C23(τ 2
+ h4)2,

here C23 = C15 + C14C2
21T .

Applying Lemmas 3.1 and 4.1 again, we can obtain from above inequality that

∥en
∥∞ ≤ C24(τ 2

+ h4),

here C24 = Cδ

√
C23 +

C2
22

( 4
3 |

2
π |

2δ
−

1
3 )2

. This proof is completed.

5. Numerical experiments

In this section, we adopt numerical experiments to demonstrate our convergence results and discrete conservation
law. Denote calculation error E(h, τ ) = max1≤n≤N ∥un

− U n
∥∞, where un and U n denote the exact solution (or

reference solution when the analytical solution is unknown) and numerical solution calculated by h and τ at time
tn , respectively.

Also, we define the convergence order in spatial and temporal directions, respectively, by

Ord1 = log2
E(h, τ )

E(h/2, τ )
, Ord2 = log2

E(h, τ )
E(h, τ/2)

or sufficiently small τ and h, respectively. Based on the previous analysis, to trade off the accuracy and efficiency,
he parameter 1/ε should be much less than τ 2

+ h4. Thus we take ε = 1.0 × 108 in the simulations.

xample 5.1. We first consider the following problem with a source term:

ut t + (−∆)α/2u + iut + |u|
2u = f (x, t), x ∈ Ω = [0, 1], 0 < t ≤ 1. (5.1)

The initial conditions and source term f (x, t) are determined by exact solution u(x, t) = (t + 1)3x4(1 − x)4.

In Tables 1 and 2, we list the errors and convergence orders in spatial and temporal directions, which are obtained
y fixing τ and h small enough, respectively. It is clearly observed that the convergence order is close to 4 in space
nd 2 in time, which is consistent with our theoretical analysis.

For comparison, we calculated the errors and convergence order with respect to the T-SAV scheme (3.6)–(3.8),
AV scheme in [2] and the three-level linearly implicit scheme in [9] for Example 5.1. The results are listed in
able 3 for different h when τ = 1/1000. It is easy to observe that the proposed method in this paper has smaller
rror and higher convergence order.

It is worth noting that because the source term f (x, t) is not equivalent to zero, the discrete energy conservation

aw aforementioned in Theorem 3.4 is no longer valid, thus we here do not verify it.
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Table 2
Error and convergence order in time for Example 5.1 with different values of α and h = 1/100.

τ α = 1.2 α = 1.5 α = 1.8

E(h, τ ) Ord2 E(h, τ ) Ord2 E(h, τ ) Ord2

1/4 3.3069e−4 – 3.5895e−4 – 3.7982e−4 –
1/8 8.3133e−5 1.9920 8.5296e−5 2.0732 9.7551e−5 1.9611
1/16 2.0794e−5 1.9993 2.1011e−5 2.0213 2.5058e−6 1.9609
1/32 5.2029e−6 1.9988 5.2362e−6 2.0046 6.3251e−6 1.9861
1/64 1.3024e−6 1.9981 1.3084e−6 2.0008 1.5876e−6 1.9943

Table 3
The comparison result of for the different values of α at t = 1.

Scheme h α = 1.3 α = 1.6

E(h, τ ) Ord1 E(h, τ ) Ord1

T-SAV 1/4 1.11e−3 – 1.80e−3 –
1/8 1.13e−4 3.3024 1.82e−4 3.3454
1/16 7.09e−6 3.9938 1.26e−5 3.8522
1/32 4.50e−7 3.9745 8.14e−7 3.9498
1/64 2.71e−8 4.0554 4.91e−8 4.0500

SAV 1/4 7.26e−2 – 8.85e−2 –
1/8 1.66e−2 2.1250 2.01e−2 2.1388
1/16 4.41e−3 1.9169 4.64e−3 2.1115
1/32 1.49e−3 1.5594 1.08e−3 2.0996
1/64 4.17e−4 1.8441 2.56e−4 2.0812

Linear-Implicit 1/4 3.51e−3 – 4.32e−3 –
1/8 7.95e−4 2.1424 8.97e−4 2.2679
1/16 1.98e−4 2.0055 2.24e−4 2.0016
1/32 4.97e−5 1.9942 5.61e−5 1.9974
1/64 1.23e−5 2.0146 1.42e−5 1.9821

Table 4
Discrete energy En for different values of α at different times t .

t α = 1.2 α = 1.5 α = 1.8 α = 2.0

0 3.319216214209640 4.683481252241875 6.901017658923674 9.124413226435424
10 3.319216213476719 4.683481251241374 6.901017658950430 9.124413226532425
20 3.319216214426772 4.683481251054013 6.901017658429924 9.124413226771185
30 3.319216214485132 4.683481251783468 6.901017658114058 9.124413227012433
40 3.319216215210285 4.683481251096453 6.901017658280851 9.124413227123945
50 3.319216214460822 4.683481250647293 6.901017658768502 9.124413226755323

Example 5.2. Consider the problem with unknown exact solution as follows

ut t + (−∆)α/2u + iut + |u|
2u = 0, x ∈ [−5, 5], t ∈ [0, T ]. (5.2)

The initial conditions are selected as u(x, 0) = (1 + i)x exp(−10(1 − x)2) and ut (x, 0) = 0.

To verify the energy-conserving of the difference scheme (3.6)–(3.8), we calculate the values of the discrete
nergy En for different values of α at different times t , see Table 4. It is easy to see from that the T-SAV scheme
3.6)–(3.8) maintains the discrete energy well.

Also, the evolution of discrete energy En over a longer time interval (T = 500) for different values of α

re depicted in Fig. 1 which indicates that the T-SAV scheme (3.6)–(3.8) captures the phenomenon of energy
onservation, and it is suitable for long-term simulation.
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Fig. 1. The evolution of discrete energy En over time t for different values of α.

. Conclusion

In this paper, based on T-SAV approach, we proposed and analyzed the higher order energy-preserving difference
cheme for nonlinear space fractional Schrödinger equation with wave operator. It is proved that the solutions of the
ifference scheme are energy-preserving, bounded, and convergent in maximum norm. Finally, numerical examples
or two fractional models illustrated that the proposed scheme can guarantee energy conservation of the system and
as accuracy of 4 in space and 2 in time. It should be noted that, as far as we know, there is no theoretical support
hat the cosine value in Eq. (2.2) is always greater than 0, although the results based on various numerical examples
o far show that this treatment is successful.
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